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ITERATED COLLOCATION METHODS FOR VOLTERRA INTEGRAL 
EQUATIONS WITH DELAY ARGUMENTS 

HERMANN BRUNNER 

ABSTRACT. In this paper we give a complete analysis of the global convergence 
and local superconvergence properties of piecewise polynomial collocation for 
Volterra integral equations with constant delay. This analysis includes contin- 
uous collocation-based Volterra-Runge-Kutta methods as well as iterated collo- 
cation methods and their discretizations. 

1. INTRODUCTION 

In this paper we analyze the numerical discretization of Volterra integral 
equations with (constant) delay z > 0, 

rt 

y(t) =g(t) + tk (t, s, y(s)) ds 
( 1.1l ) Jot-T 

+ A k2(t, s, y(s)) ds, t E I := [O, T], 

with 

(1.2) y(t) = +(t), t E [-T, 0), 

by collocation methods in certain (nonsmooth) piecewise polynomial spaces. 
Equation (1.1) encompasses an important particular delay equation frequently 
encountered in physical and biological modelling processes [13], namely 

t 

(1.3) y(t) = g(t) + J k(t, s, y(s))ds, t E I; 
tT 

it corresponds to setting k2 = -kl (= k) in (1.1). 
It will be assumed that the given functions, b: [-z, 0] R, g: I - R, 

kl: S x R - R (S := {(t, s): 0 < s < t < T}), and k2: ST x R - R 
(ST := I X [-T X T - T]) are (at least) continuous on their domains; additional 
conditions will be imposed later when needed. In order to exclude "classical" 
Volterra integral equations (which were considered in [6, 8]) we also assume 
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582 HERMANN BRUNNER 

that k2(t, s, y) does not vanish identically. Existence and uniqueness results 
for (1.1) and for related Volterra integral equations with finite delay (e.g., 

(1.4) y(t) = g(t) + J k(t, s, y(s), y(a(s))) ds, t E I, 

with a(s) < s) can be found, for example, in [3, 7, 12, 13, 14]. 
In recent years, various aspects of numerical methods for (1.1), (1.3), or 

(1.4) have been studied. Results dealing with convergence properties are given 
in [17] (Euler's method, trapezoidal and midpoint method for (1.4) with pure 
delay and a(s) = s - T); [14] (Hermite-type collocation for (1.4)); [12] (direct 
quadrature methods for (1.4) with state-dependent delay: a = a(y(s))); [1] 
(extension of ODE Runge-Kutta methods to (1.3)); and [19] (general Runge- 
Kutta methods and their natural extensions for (1.1)). The stability analyses 
for Runge-Kutta-type methods [2, 19] and (p, c)-reducible quadrature meth- 
ods [11] are restricted to (1.1) with k1(t, s, y) = a, k2(t, s, y) = b (a, b 
constants), with IbI < -Re(a) . Note that in this case (1.1) can be reduced to a 
delay differential equation with constant coefficients, 

y'(t)=ay(t)+by(t-T), tEI, 

(assuming that g(t) = yo= const). 
In [19] the stability of collocation methods is briefly discussed. However, 

an analysis of the global convergence and the local superconvergence properties 
of collocation methods for (1.1) is essentially still lacking. (However, in [14] 
Hermite-type collocation in the space Smijl)(FIr) (piecewise polynomials of 
degree 2m - 1 which are in Cm-I (I); see ?2 for details on notation) is studied 
and shown to yield global O(h2m)-convergence.) It is the aim of this paper 
to show that O(h2m)-convergence at the mesh points FIN can be attained by 
using the iterated collocation solution corresponding to collocation in S(7mJ (FIN) 
(piecewise polynomials of degree m - 1 possessing jump discontinuities on 
FN); on the interval I itself, the order of convergence will turn out to be 
p = m . 

2. COLLOCATION AND ITERATED COLLOCATION 

Let t, := nh (n = 0, ..., N- 1; tN = T) define a uniform partition for 
I = [0, T], and set FIN := {to, ... , tN}, Io = [to, ti], In := (tn, tn+i] (1 < 

n < N - 1). The mesh FIN is assumed to be constrained, i.e., 

(2.1) h - for some r E N. r 

For given integers d > -1 and m > 1 the piecewise polynomial space S -Id (FN) 

is defined by 

Sm+d(IN) = {U I -> R; u II,=: un E 7Cm+d; 
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where 7m+d denotes the set of (real) polynomials of degree not exceeding 
m + d. The dimension of this vector space is obviously given by 

dim S( d (FIN)= Nm + d + 1. 

This shows, in the context of collocation, that the natural choice of d in (2.2) 
will be governed by the nature of the functional equation to be solved: if the 
equation under consideration is a differential or integro-differential equation of 
order K, then d = K - 1; when solving integral equations like (1.1) we choose 
d = -1 . 

For given real numbers {cj} with 0 < cl < ... < cm ? 1, define the set 
XN := {tn,,j} of collocation points by 

(2.3) tn,j :=tn+ cjh (j= 1,.. ,m; n =O, N. ,- 1). 

The collocation solution u E S(-) (IIN) to (1.1) is then given by the equation 

(2.4) 
{t rt T 

u(t) = g(t) + Jk (t, s, u(s)) ds + k2(t, s, u(s)) ds, t E XN, 

with 

(2.5) u(t) = +(t) on [-T, 0). 

If t = tn,i is such that tn,i - T (= tnr,j) < 0 (recall that, by (2.1), T = rh= 

tr), then (2.4) becomes 

rt 
(2.6) u(t) = g(t) + J ki(t, s, u(s)) ds - ??(t) , t =tn, 

(j = 1, m; n = 0, r - 1), where 

0 

(2.7) 4?(t) :=X k2(t, s, +(s)) ds. 

In contrast to classical Volterra integral equations corresponding to k2 = 0 
(where no initial condition is present), or delay differential equations (where 
collocation requires the evaluation of the given initial function at certain points), 
the occurrence of the term ?(t) in the collocation equation (2.6) reveals that, 
for t = tn , < , we have to evaluate (or approximate) a functional containing 
the given initial function +b(t) . As will be shown in ?3, this represents a further 
potential source of error. 

The iterated collocation solution, uit, based on the collocation solution u 
defined by (2.4), (2.5) is given by 

(2.8) 
rt rt -T 

Uit(t) := g(t) + Jkl(t, s, u(s)) ds + J k2(t, s, u(s)) ds, t E I. 

It has the property that 

Uit(t) = u(t) whenever t E XN. 
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In order to put (2.4) and (2.8) into a form amenable to numerical computa- 
tion, let t E In, and define 

{tn 

Fn(t) = ki (t , s , u(s)) ds 

(2.9) n-I 1 
.h Z kJ k(t, ti + vh, u(ti + vh)) dv . 

i=O 0 

Moreover, set 
ot-T 

(2.10) D(t) J k2(t , s, u(s)) ds 

(with D(t) = -4D(t) if t < T). Since u E 7rml on In, we may write 
m 

(2.11) U(tn+vh) = ELk(V)Un,k, tn + vh E In , 
k=1 

where Un,k U (tn ,k) and 

m 
Lk(V) :=I 7 -Cl 

1l1k Ck - C 

Thus, (2.4) assumes the form 

Un , j = g(tn , j) + Fn (tn , j) + D (tn, j) 

(2.12) ~ ~ C1 m 

(2.12) +h ]k t (tn,j tn+vhZ ELk(V)Un,k) dv, 

j = 1,..., m. For each n = 0, ..., m, (2.12) represents a system of m 
nonlinear algebraic equations for Un (U= , 1, ..., Un,m)T E Rm. For t = 
tn + zh E In, the iterated collocation equation (2.8) becomes 

uit(t) =g(t) + Fn(t) + D(t) 
(2.13) jZl (L md 

Consider now (2.12): in general, the integrals on the right-hand side (including 
those in Fn(tn,j) and D(tn, )) cannot be evaluated analytically but have to be 
approximated by suitable quadrature formulas. We choose interpolatory m- 
point quadrature formulas whose abscissas are given by the collocation points. 
Specifically, 

rc, 

k, k(tn,j i tn + vh, UN + vh)) dv 

will be replaced by 
m 

E wj, 1ki (tn , j tn + cjclh, u(tn + cjclh)) 
1=0 
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with wj,l := cjwl, w, = f L1(v) dv, and u(t, + cjclh) given by (2.11), with 
V = CjC1. 

The resulting fully discretized collocation equation corresponding to (2.12) 
is thus given by 

Un Xj =g(tn,Xj) + Fn(tn,Xj) + D(tn, j) 

(2.14) + hcjEwlkl (tn,j, tn+ cjclh, ELk(CjCl)Un,k) 
1=1 k=1 

(j=1,... ,m),with 

n-I m 
(2.15) Fn(t) :=hZZkj(t, ti,1 , Ui, ), 

i=O 1=1 

and 
(2.16) 

n-r-1 m 

D(tn,j) :=h , Zk2(tn, j, ti,l1, U(,I) 
i=O 1=1I 

m m 

+ hcj 
, 

WA k tnj 
X tn-r+ chcl , ZLk (CiCl) Un-r, k) 

1=1 k=i 

provided that n - r > 0. If n - r < 0, then D(tn,j) is given either by the 
exact value of -D(tn,j) (recall (2.7)), 

D(tn,j) =D(tn,j) =-h J k2(tn,1j tn-r + vh, / (tn-r + vh)) dv 
Ci 

(2.17) -1 I 
- h E k2(tn,j , ti+ vh . 0(ti + vh)) dv, 

i=n-r+l ? 

or by a suitable quadrature approximation to -(I)(tn,j), e.g., by 
m 

D(tn, j) =-h E tij, ik2(tn,j, tn-r + Xj,lh, Tk(tn-r + cj,jh)) 

(2.18) 1=1 

-h E E WAk(tn, j 5 ti,l 1 5 (ti, 1)) 5 

i=n-r+l 1=1 

where 

Xj, l := cj + (1-Cj)Cz, wj, := (I - cj)w (j, I=1..,m) . 

The fully discretized collocation scheme generates a collocation solution ui E 
Sm1 I(IIN), with e u - $ : 0 in general. 

Equations (2.14)-(2.16), together with (2.11) (v = 1), 
m 

(2.19) Yn+i = i(tn+i) = ELk(l) Un,k 
k=1 
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represent an implicit m-stage Volterra-Runge-Kutta (DVRK) method for the de- 
lay integral equation (1. 1). This class of collocation-based Runge-Kutta methods 
forms an important subset of the general DVRK methods discussed in [19]. 

The fully discretized version of the iterated collocation equation (2.13) be- 
comes, for = tn+1 X 

fiit(tn+1 ) =9(tn+l ) + FPn(tn+l ) + A(tn+0 

(2.20) m 
+ h Ewlkl (tn+ I, tn, 1 X Un, 1); 

1=1 

for arbitrary values of t = tn + zh E In, it is defined by an expresssion similar 
to the right-hand side of (2.14), with z replacing cj. 

3. GLOBAL CONVERGENCE 

Let u E S (1N) denote the (exact) collocation solution to (1.1) defined by 
(2.4)-(2.6). For ease of exposition we will focus on the linear version of (1.1), 

rt rt-T 

(3.1) y(t) = g(t) + jKi(t, s)y(s) ds + j K2(t, s)y(s)ds, t E I, 

where K1 E C(S), K2 E C(ST). A comment on the extension of the con- 
vergence results to the nonlinear equation (1.1) can be found at the end of the 
section. 

Theorem 3.1. Assume that the given functions in (3.1) and (1.2) satisfy g E 
Cm(I), K1 E Cm(S), K2 E Cm(ST) E Cm[ -T, 0], and that, for t E [0, T], 
the integral (2.7), 

??(t) := j K2(t, s)q(s) ds 
tT 

is known exactly. Then for all sufficiently small h = z/r (r E N) the constrained- 
mesh collocation solution u E Sm- l) to (3. 1) satisfies 

(3.2) Ily-uIIo < Chm 

for some finite C not depending on h. This estimate holds for all collocation 
parameters {c;} with 0 < c1 < ... < cm < 1. 

The iterated collocation solution corresponding to u exhibits the same global 
order of convergence, 

(3.3) Ily-uitIlIo < Chmi. 

Proof. Assume for simplicity, and without any loss of generality, that T = MT 
for some M E N. In each interval J4 := (,UT, (,u + 1)z), the exact solu- 
tion y of (3.1) is m times continuously differentiable. This follows from the 
smoothness hypotheses we have imposed on 0b, g, K1, and K2, and from 
the expressions for y(@) (t) obtained by successively differentiating (3.1) with 
respect to t. From this it is readily seen that both the left and right limits 
of y(v)(t) (i = O, ... , m), as t tends to UTr, exist and are finite. Thus, let 
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t = tn + vh E In and set 
m 

(3.4) e(tn + vh) = hm Zi3n, iv'1- + hmRn(V) 
1=1 

where 
m 

y(tn + vh) = Yn,V- + hmRn(V), Yn,1 := h1-1y(-- )(tn)/(1-1)! 
1=1 

(with Rn (v) denoting the remainder term in the above application of Taylor's 
formula), 

m 

U(tn +vh) = E an,lVl-1 
1=1 

and 
hmfn,l := Yn,l- an,l (1 = 1 , ..., m). 

It follows from the above observation on the smoothness of the exact solution 
that at each breakpoint tn = ,uz (,u = 0, ... , M- 1), 

Y(1-1)(tn) := linlmY(1t)O 5 I1=1, ... ,m, 

exists and is finite. 
The collocation error, e := y - u, satisfies 

{tnJ j tn-r,j 

(3.5) e(tn, j) = J K1(tn , s)e(s) ds + J K2(tn, j, s)e(s) ds 

j = 1, .. , m (n=,.. = , N-1) . If tn < z (= tr), then tn-r,j = tn + cjh- 
z < 0. Since u(t) = 0(t) on [-z, 0), equation (3.5) reduces to 

Itn 3 

e(tn, j) = J KI(tn,j, s)e(s) ds 

which may be written as 

rcJ 
e(tn,j) = h J K1 (tn, , tn + vh)e(tn + vh) dv 

n-I I 
+h K1(tn, J ti + vh)e(ti + vh) dv . 

i=o 

Using the expression (3.4), and setting fin := (fin, 1, ... ., fn,m)T E Rm, and 
qn = (qn, i5 .. 5 qn, m)T ERm ,with 

rci 
qn, i :=-Rn(cj) + h J K1(tn, j tn + vh)Rn(v) dv 

n-I( 
+h E / Ki (tn, j 5 ti + v h)Ri (v) dv 
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we obtain a recurrence relation for the vectors /n of the form 
n-i 

(3.6) (V - hQ,)n)fn = h EJ Ql)ifii + qn (O < n < r -1), 
i=O 

where V is the Vandermonde matrix V = (c 1), and where the matrices Ql)i 
are given by 

Qnl,)n (j KI(tn,j t + vh)v'' dv) 

and 

Q)= ( jo KI(tn,j, ti +vh)vl-i dv) (i<n). 

Since by assumption, K1 E C(S), we have llhQ(1,)n) I < I for all sufficiently 
small h > 0, and so V - hQ(l)n is nonsingular. It thus follows from (3.6) that 

n-I 
(3.7) Ilflnlli < hCo Z Jll/illi + Cl. 

i=O 

A well-known result on discrete Gronwall inequalities (see, e.g., [10, p. 41]) 
leads to 

(3.8) Ilflnill < Cl * exp(Cor) =: B 
(n = 0, ..., r - 1) uniformly as h -O 0 (where rh = T). This implies, by 
(3.4), that 

le(tn + vh)I < hm(B + R) =: Ch 
for vE[0,l], n=0,...,r-l. 

Now let tn > tr (= T). Starting with (3.5), and using again the expression 
(3.4) for the collocation error on In , we find, in complete analogy to the above, 

n-i n-r 

(3.9) (V - hQn, )n)f_n = h E Qni)ii + h nE Q2,)ii + qn 
i=O i=O 

(n > r). Here, the matrices Q(2)1 are defined similarly to the matrices Ql)i 
introduced in (3.6), where now 0 < i < n - r. Moreover, the expression for qn 
now contains additional terms involving the kernel K2. We omit these obvious 
details. 

For all sufficiently small h > 0, equation (3.9) once more yields a discrete 
Gronwall inequality, 

n-I n-r 

Illfnlli < hCo 1 Ilfill + hDo E IlIlill + Cl 
i=O i=O 

where now r < n < N - 1. The estimate (3.8) and the result [10, p. 41] then 
imply that 

lJlnlli < B (r < n < N-l1) 
uniformly as h -+ 0 (with Nh = T). Hence, by (3.4), the statement (3.2) of 
Theorem 3.1 follows. 
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The error eit := y - uit associated with the iterated collocation solution in- 
troduced in (2.8) is given (for the linear case (3.1)) by 

ot rt-T 

eit(t) = J K1 (t, s)e(s) ds + J K2(t, s)e(s) ds, t E I 

with e(t) = 0 on [-z, 0]. Hence, for t E [0, r], we obtain 

t 

11eitl1Io < jjejj,0 O max IK1(t, s)Ids < Cohm, 

while for t E [z, T] we find 

lleitlloo < Ilellco * 0mtax, IK, (t , s)l ds + <mta<xT JK2(t, s)lI ds) 

< Cihm . 

This completes the proof of Theorem 3.1. o 

We now turn to the case where the integral 4?(t) in (2.7) (see also (2.17)) 
cannot be found analytically but has to be approximated by suitable numerical 
quadrature. 

Theorem 3.2. Let the assumptions of Theorem 3.1 hold, except that the integrals 

0 
4? (t) =X K2(t, s)o(s) ds, t = tn ,j (n = O,..., r- 1), 

are now approximated by quadrature formulas ??(t), with corresponding quadra- 
ture errors Eo(t) := ??(t) - c@(t) such that 

(3.10) jEo(t)l < Qohq, t = tn,j (O < n < r), 

for some q > 0. Then the collocation solution u E Sm-l)(FIN) satisfies, for all 
sufficiently small h > 0, 

(3.11) llellj, < ChP, with p := min{m, q} . 

The same convergence estimate holds for the iterated collocation solution uit, 
provided (3.10) is valid for all t E [-T, 0] . 

Proof. Recall the collocation equation (2.12), and assume that 0 < n < r. If 
we subtract this equation from (3.1) (with t = tn, j) we find 

{tn , i 

e(tn, j) = KI(tn, j , s)e(s) ds -((D(tn, j)- (D(tn, j)), 

where <D(t) - 42(t) = Eo(t). Instead of (3.4), write 

m 

e(tn + vh) = hP Z/n,iv'1- + hmRn(v) 
1=1 

with suitable p > 0 to be determined, and with 
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in analogy to the expressions introduced in the proof of Theorem 3.1. Substi- 
tution of this expression for the collocation error in the above error equation 
yields (after division by hP) 

m m Ci 

Z fin,,cl h h fin, fKi (tn,j , tn+ vh)vl-1dv 
1=1 l=l1 

n-l m 

+h E li,lJ KI(tn,j, ti +vh)vl-ldv 
i=O 1=1 

+hm-Pqn,j j-h-PEO(tn, j) ( = 1, ...,m). 

Proceeding as in the proof of Theorem 3.1, we readily derive, in analogy to 
(3.7), the discrete Gronwall inequality 

n-i 

llflnlll < hCo E: Il,Billi + Cl (O < n < r), 
i=O 

where Cl := hm-pC1 + hq-PQ1 . This implies that I Ifin II < C1 * exp(CoT) , 0 < 
n < r. Hence, Ifln I I will remain uniformly bounded as h - 0 (rh = T) if, 
and only if, p < min{m, q}. 
The case r < n < N- I is treated in a similar manner; we omit these details, 
as well as the ones relating to the derivation of the estimate 

1Ieitl1ko < ChP, p = min{m, q} . o 

Remark. If we employ the (interpolatory) quadrature formulas given in (2.18) 
to approximate the delay integrals -cD(tn, j), we have q > m, and hence p = m 
in (3.1 1). In other words, in this case the order of convergence of u and uit is 
given by (3.2) and (3.3) in Theorem 3.1. 

As we mentioned before, the computational form of the collocation method 
is given by (2.14)-(2.16), with (2.18) for the approximation of the delay integral 
-4D(tn,1) (n < r), and with 

m 

(3.12) Ui(tn +vh) =Lk(V)Un,k, tn +vh E In. 
k=1 

The global convergence property of this continuous implicit m-stage DVRK 
method is described in the following theorem. 

Theorem 3.3. Let the assumptions of Theorem 3.2 hold, and assume that the 
approximations 4?(t) at t tn, j (O < n < r) are given by the interpolatory 
quadrature formulas (2.18). Then the error e := y - u associated with the 
collocation solution i& E S(-1), (defined by (2.14)-(2.16), (2.18), and (3.12)) 
satisfies, for all sufficiently small h = T/r, 

1je^11., < Chm. 

Proof. Since e = y - iu = (y - u) + (u - iu), we have to show that Ilu - U11, = 

O(hm). Consider the integrals occurring in the (exact) collocation equation 
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(2.12) (for the linear case (3.1)): using m-point interpolatory quadrature for- 
mulas based on the collocation points, we have 

m 
Ki (tn,, ti + vh)u(ti + vh)dV = E w1K (tn, j, ti, 1) Ui, 1 + Ein 

0 ~~~~~~~~~~1=1 

if O< i<n,and 

rcJ 
j K1 (tn, , tn + vh)U(tn + vh) dv 

m 
- cjZ wK (tn,j tn + cjlh)u(tn + cjclh) + Enn, 

1=1 

where 
m 

u(tN + cjclh) = ELk(CiCl)Un,k . 

k=1 

Since the quadrature formulas are of interpolatory type, the corresponding 
quadrature errors En i (O < i < n) satisfy 

(3.13) JE njI < Qhm. 

Subtracting (2.14) from (2.12) and using the above quadrature processes, we 
find, setting e,nj = Un, -Un,j 5 

m m 

en,j = hc;ZE wKj (tn, j , tn + cjclh) E Lk(CjCl)gn k 
1=1 k=1 

n-I m 

+h w wK j (tn, j ti, 1)8i, l 

i=O 1=1 

n n-r 

+ Q(tn,Xj) + h 1: Ein + h E Ein-r, j 
(j =l,...,m) 

i=o i=O 

with 
m m 

Q(tn,j) := hc E w,K2(tn, j1 tn-r + c1c,h) Z Lk(CICl)8n-r,k 
1=1 k=1 

n-r-I m 
+h E E W1K2 (tn, j ti, 1)8i, 

i=O 1=1 

If we define Cn E Rm by Cn := (9n, ... Cn, m)T, it is then straightforward to 
show that the norms II Icn, satisfy a discrete Gronwall inequality of the form 

n-I n-r 

IIcnlll < hDo j 1e1jilli + hD 1j jIeill + D2 

i=O i=O 
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where D2 = O(hm), because of (3.13). Hence, Ile,111 = 0(hm), and so 
m 

Ju(t, + vh) - t(t, + vh)l < E ILk(v)IIfnkI < AJJe,41 =: Chtm 
k=1 

where tn + vh E In (n = 0, ..., N - 1). Here, A denotes the Lebesgue 
constant associated with the points {CI}. j 

We conclude this section with a comment regarding the extension of the re- 
sults in Theorems 3.1-3.3 to the nonlinear delay integral equation (1.1). Under 
the assumption of the existence of a (unique) solution y(t) on I, the nonlinear 
analogue of the error equation (3.5) is 

(tn ,, 

e (tn, j) = f kl (tn,j i s, y(s)) -kl (tn,j, s, u(s))j ds 

(3.14) tn-r IJ 

+ {k2(tn,1j s, y(s)) - k2(tn,j, s, u(s))} ds 

(j = 1, ... , m). If the partial derivatives 9ki(t, s, y)/ay (i = 1, 2) are 
continous and bounded on S x D and St x DT , respectively (with D := {y E R: 
Iy - Y(S)I < Y, s e I} and D, := {y E R: Iy - Y(s)I < Y,s E [-T, T- T]}, 
for some Y < oo), and if h > 0 is sufficiently small (assuring the existence of 
a unique collocation solution u), then (3.14) may again be written in the form 
(3.5); the roles of the Ki are now assumed by 

k0)(t, s) := k (t, s, zi(s)) (1 1, 2), 

with zi(s) := 6iy(s) + (1 - 0j)u(s), 0 < 6i = 6i(s) < 1. Hence, the above 
proofs are readily adapted to deal with the nonlinear case (1. 1), and so the con- 
vergence results of Theorems 3.1-3.3 remain valid for nonlinear delay integral 
equations. 

4. LOCAL SUPERCONVERGENCE ON nN 

It was shown in [4, 18] that if the initial value problem for a delay differential 
equation, 

y'(t) = f(t, y(t), y(t- T)), t E I (T > 0), 

is solved by collocation in S4)(,-IN), with constrained mesh rN, and if the 
collocation points are given by the Gauss (-Legendre) points (i.e., if the {c;} 
are the zeros of the Legendre polynomial Pm(2s - 1)), then 

(4.1) max IY(tn)-U(tn) < Ch2m 
1<n<N 

provided the exact solution y has continuous derivatives of order 2m on each 
subinterval (tn, tn+l). In other words, the Gauss collocation solution for con- 
strained meshes exhibits local superconvergence of order p* = 2m at the mesh 
points (while the global convergence order is p = m). (The result remains valid 
for nonconstant delays.) 

This superconvergence result does not carry over to the Gauss collocation 
solution u E S(- 1 N) for the delay Volterra integral equation (1.1): instead 
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of (4.1) we only have 

max Iy(t) - u(t,)I = 0(hm). 
1<n<N 

The best possible local superconvergence result is p* = 2m - 1. However, for 
the corresponding iterated collocation solution uit, the result (4. 1) is again true. 
The following theorem makes this more precise. Without loss of generality we 
will assume T= tN = MT for some M E N. 

Theorem 4.1. Assume that the given functions in (3.1) and (1.2) are smooth: 
g E Cm+d (I), K1 E Cm+d(S), K2 E Cm+d(ST), and q E Cm+d[-TC, 0], for 
some (given) integer d with 0 < d < m. Suppose that the delay integral ??(t) 
(cf (2.7)) can be evaluated analytically. 

If h = T/r is sufficiently small, if the collocation parameters {c;} have the 
orthogonality property 

I m 

(4.2) Jk := sk J(S-cj) ds = 0, k = 0, ...,d-1; Jd 
j=1 

and if cm = 1 , then the collocation solution u E S(- 1)(N) defined by (2.1 1), 
(2.12), (2.17) is locally superconvergent at the mesh points whenever d > 0: 

(4.3) max Iy(tn) - u(t) < C*hm+d 
1<n<N 

If d = m (i.e., if the {c;} are the Gauss points, for which cm < 1), then 

(4.4) max Iy(tn)-U(tj)I < Chm, 
1<n<N 

but 

(4.5) max y(tn) - Uit(tj)I < C*h2i. 
1<n<N 

Here, the iterated collocation solution uit is determined by (2.13). 

Remark. For "classical" Volterra integral equations (i.e., for (1.1) with k2 = 0), 
local superconvergence results for the cases d = m, d = m - 1 (Radau II 
points), and d = m - 2 (Lobatto points) were derived in [8, 6, 10]. In [6] these 
local superconvergence properties were used as the basis for error and stepsize; 
control in a code for such nonlinear integral equations. As will be seen below, 
the techniques for deriving local superconvergence results for the delay Volterra 
integral equations (3.1) and (1.1) in many ways closely resemble those employed 
in the nondelay case [8, 10, 9]; the crucial new element is a generalization of 
the standard resolvent representation to an analogous one for the solution of 
(4.7) which takes into account the delay term F(t) (see Lemma 4.3). 

Proof of Theorem 4.1. The collocation equation (2.4) (applied to the linear delay 
equation (3.1)) may be written in the "continuous" form 

t -t-t 

u(t) = -(t) +g(t) + K/ K(t, s)u(s) ds+ / K2(t, s)u(s)ds, t EI, 
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where the defect 3 vanishes on XN: 

(4.6) (tn,j) =O, j= 1, ..., m; n =0,... N- 1; 

we also have 3(t) = 0 for t < 0. Moreover, for 0 < v < m + d, we have 
that 3(v)(t) is piecewise continuous, with finite jumps at t = wUT (,u = 0, ... 

M - 1) . The collocation error e y - u solves the integral equation 

t 
(4.7) e(t) = 3(t) + JK (t, s)e(s) ds + F(t), t E I, 

where 
rt-T 

(4.8) F(t) j K2(t, s)e(s)ds if t ej[T, T]. 

For t E [0, T], we have (by our assumption on ??(t)) F(t) = 0. The error for 
the iterated collocation solution uit is related to e by 

(4.9) eit(t) = e(t) - d(t), t E I. 

Lemma 4.2. Let t E [0, t] (= [0, tr]). If 
0 

??(t) = j K2(t, s)q(s) ds 

is known exactly, then 
t 

(4.10) e(t) = 3(t) + J R (t, s)3(s) ds . 

Here, R1 denotes the resolvent kernel associated with the given kernel K1: 
t 

RI (t, s) = KI (t, s) + K, (t, v)RI (v, s) dv, (t, s) E 5. 

Proof For t E [0, T] we have F(t) = 0, and so the error equation (4.7) reduces 
to a classical Volterra equation whose (unique) solution is given by (4.10) (see, 
e.g., [10, pp. 11-13]). o 

The next lemma contains the central element for the proof of the local super- 
convergence results of Theorem 4.1; the result may be viewed as a generalization 
of the resolvent representation of the collocation error (in terms of the defect 
function 3(t)) for the nondelay case (see, e.g., [9]). Recall that T = MT for 
some positive integer M, and set 4,, := /wT (,u = 0, ... , M). 

Lemma 4.3. Let ??(t) satisfy the condition imposed in Lemma 4.2. Then for 
t E [4A, l+ I (1 < u < M - 1) the collocation error e(t) governed by (4.7) can 
be expressed in the form 

JU t- it 

(4.11) e(t) = 3(t) + E Qy, i(t, s)3(s) ds, 

where the functions Qy, i(t, s) depend on the given kernel functions Ki(t, s) 
(i = 1, 2), and their degree of smoothness is determined by that of K1 and K2. 
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Proof. Consider first the interval [T, 2T] (= [l , 2I: p = 1). Using the result 
(4.10) of Lemma 4.2 (with 3 (s) replaced by 3(s) + F(s)), we can write the 
error equation (4.7) as 

rt rt 

e(t) = 3(t) + j RI (t, s)3(s) ds + F(t) + j R1 (t, s)F(s) ds 

with F(t) given by (4.8). Since t - T is in [0, T], we find 

F(t) = j K2(t, s)* {3(s) + j R1(s, v)3(v) dv} ds 

t-T rt-T ot-T 

= J K2(t, s)3(s) ds + J J K2(t, s)RI (s, v)ds) (v) dv- 

Set 
ot-T 

F(t) jt-J G1, 1 (t, s)3(s) ds 

where 
rt-T 

GI, I (t, s) := K2(t, s) + J K2(t, v)RI (v, s) dv . 

(Note that the resolvent kernel R1 (t, s) inherits the smoothness properties of 
K1 (t, s) .) Therefore, since F(t) = 0 on [0, T], 

jRI(t, s)F(s)ds = jRI(t, s) ( G/G ,I(s, v)3(v)dv) ds 

= jt-Z(f/ RI(t,s)G,I(s,v)ds) (v) dv 

ot-T 

- GI 2t s)(s) ds. 

Hence, (4.1 1) follows with 

Ql,I(t, s) := GI,I(t, s) + GI,2(t, s) . 

For t E [,UT, (,U + 1)T] (2 < , < M - 1), the result (4.11) is established in 
a similar manner by a simple induction step, using the equations (4.7), (4.8), 
and (4.1 1) in [(,u - 1)T, ,UT]. Since 3(v) = 0 for v < 0, we have the identity 
(using Dirichlet's formula) 

t-I S-IT 

K2(t, s) (j Q,i(s, v)(v)dv ds 

rt-T rS-IT 

J K2(t5 s) j Q, i(s, v)3(v)dv 
ds 

rt-(i+I)T / t-T 

1=(J+l)z (j K2(t,s)Q1,j(s,v)ds) (v)dv. 
Details arVeto+iT 

Details are left to the reader. o3 
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The results of Lemma 4.2 and Lemma 4.3 and the companion expression for 
the iterated collocation error (which follows from (4.9)), 

JU t-ft 

(4.12) eit (t) = E Q8,,i(t, s)6(s) ds, t E [4A,u4+] 

form the basis for the local superconvergence results in Theorem 4.1. Let t = 
tn E [E + h, 4?+ I. Observing that tn - iT = tn- irh = (n - ir)h, we obtain 

8 tn- iT 

e(tn) = c(tn) + , j Q, i,(tn, s)fr(s) ds 
i=O 

II n-ir-I 1 

= (tn) + h >1 f 'P '(tk + vh) dv, 
i=O k=O 

with 

'P, J(tk + vh) := Qu, i(tnf, tk + vh)05(tk + vh) 

If we now replace each of the integrals in the above expression by the sum 
of its interpolatory m-point quadrature formula (with the abscissas coinciding 
with the collocation points tk + cjh, j = 1, ..., m) and the corresponding 

quadrature error JE.' It, we obtain, since (5(t) = 0 for t E XN (cf. (4.6)) 

implies T [n]](tk + cjh) = 0, 

n-ir- I 

(4.13) e(tn) = 3(tn) +hZ E ( < ,u < n < ,u+ I < M), 
i=O k=O 

where MT = T. The orthogonality condition (4.2) implies that these (interpo- 
latory) m-point quadrature formulas all possess the degree of precision m + d. 

Thus, since the integrands T'[n]J(tk + vh) are smooth for v E [0, 1], the quadra- 

ture errors in (4.13) can be bounded by E[n]I < Chm+d with some finite con- 

stant C not depending on h. Finally, noting that MT = M. rh = T = Nh 
and that therefore the number of terms in the above sums is (N), we arrive 

at the estimates le(tn)l < 1I3(tn)l + chm+d, and, by (4.12), leit(tn)l < Chm+d 

(n=l,... ,N). 
If cm = 1, then tn- I+Cmh = tn E XN, andthus 3(tn) = 0, 1 < n < N. 

This proves (4.3). Note that under this constraint on cm we have d < m - 1, 
with d = m - 1 if, and only if, the {cj} are the Radau II points, i.e., the zeros 
of Pm (2s - 1) - Pm -(2s - 1) . For continuous u (corresponding to the choice 
Cl = 0, Cm = I; m > 2), the optimal value of d in (4.3) is d = m - 2. 

The maximum value of d in the orthogonality condition (4.2), d = m, 
occurs if, and only if, the collocation parameters are the Gauss (-Legendre) 
points in (0, 1). For these points we have 0 < cl < ... < cm < 1, and hence 

6$(tn) 0/ . It is easily seen from the definition of the defect ( that, in general, 
we can do no better than d5(t) = O(h m) for t 0 XN. (Consider (3.1) with 

Ki = const, k = const; in this case (5 E S40)(N), i.e., is piecewise continuous 
of degree m, vanishing on XN > rIN.) This yields (4.4). The estimate (4.5) 
for the iterated collocation solution follows from (4.9) (or (4.12)). r 
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The proofs of Theorems 3.2, 3.3, and 4.1 readily suggest that the local super- 
convergence results of Theorem 4.1 are also true for the discretized collocation 
solution u~ E Sm- I (TIN) defined by (2.14)-(2.16), (2.18), and (3.12), and for 
the corresponding iterated collocation solution iit (cf. (2.20)), provided the 
quadrature approximations to the delay integrals 

0 

(D(t') = k2(t, , s, ?(s)) ds 

tn I r 

=-h EZ jk2(tn, ti+vh, q$(ti+vh))dv 
i=n-r? 

are given by 

-1 m 
(4.14) Ib(tn) = -h j j wlk2(tn , ti,1, X (ti,1)) (O < n < r). 

i=n-r 1=1 

We leave the details of the proof to the reader, but summarize these results in 

Theorem 4.4. Let the assumptions of Theorem 4.1 hold, and assume that the 
approximations to the delay integrals FD(tn,j) and FD(tn) (where 0 < n < r) are 
given by the quadrature processes (2.18) and (4.14), respectively. 

If h = T/r is sufficiently small and if the orthogonality condition (4.2) holds, 
then the solution ui given by the continuous implicit DVRK method {(2.14)- 
(2.16), (3.12)} has the property 

mnax IY(tn) - Ui(tn)I < C*hm?d 
1<n<N 

provided that cm = 1 (and thus d < m - 1). 
If the {cj are the Gauss points in (0, 1), then 

max IY(tn) - fi(tn)I < Chmi 
1<n<N 

while 
max IY(tn) - it(tn)l < C*h2in. 

1<n<N 

Finally, we remark that Theorems 4.1 and 4.4 can be extended to the non- 
linear Volterra equation (1.1), as follows. Instead of (4.7), the equation for the 
collocation error e now has the form 

t 

e(t) = d (t) + J(ki (t , s , y(s)) - ki (t, s, u(s))) ds + F(t), 

where 
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Under appropriate differentiability and boundedness conditions for k1 and k2 
we then find, setting u(s) = y(s) - e(s), 

ki(t, s, y(s)) - ki(t, s, u(s)) =O0ki (t , s , y(s)) * e(s) 

1 a2ki 2 S 
+ 2 5-y-2 (t, s. zj(s)) * e(s, 

where zi is between y and u. Since the global convergence of u (and ui) has 
already been established, we know that 

jje2 Kc0 = O(h2m) for any {Cj}. 

The remaining part of the proofs (both for u and uz) once more makes use of 
the techniques described before. 

5. CONCLUDING REMARKS 

It should be possible to combine the techniques used in [4, 5, 18] for delay 
differential equations with the ones employed in this paper in order to extend the 
above results to Volterra integral equations with variable delays (e.g., to (1.4)) 
or with multiple delays ([7]; see also [16] for delay differential equations with 
multiple (constant) delays). Volterra integral equations with state-dependent 
delays appear to be much more complex to deal with (compare [12]). 

In [19] Vermiglio considered, among other things, the P-stability of collo- 
cation methods for Volterra integral equations with delay. In particular, it 
was shown that if the collocation parameters {cj} are such that they yield an 
A-stable collocation method for an ordinary differential equation, then the cor- 
reponding (discretized) collocation method for the delay integral equation (1.1) 
is P-stable. As we have seen, for delay integral equations collocation at the 
Gauss points does not lead to local superconvergence at t = tn; it is the corre- 
sponding iterated collocation solution that exhibits O(h2m)-convergence at the 
mesh points. Is the iterated collocation solution u'it corresponding to the Gauss 
collocation solution &i also P-stable? This question will be studied in a sequel 
to the present paper. 
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